The tryptic activation pathway of monomeric procarboxypeptidase A.
نویسندگان
چکیده
Procarboxypeptidases are the remaining major digestive zymogens the activation process of which remains unsolved. Here it is shown that in the tryptic activation of monomeric procarboxypeptidase A from porcine pancreas, the generation of carboxypeptidase A (CPA) activity parallels the limited proteolysis of the 94-residue activation segment. This degradation proceeds from the COOH-terminal end of the molecule, and CPA itself makes an important and unexpected contribution by excising the COOH-terminal arginine residue of the released primary activation fragment. Successive cleavages at some of the peptide bonds of the activation segment nearest to the COOH terminus were found to be of prime importance in eliciting CPA activity, particularly those involving the carbonyl groups of Arg94 and Gly93 which were first cleaved. It is also shown that the rate of activation does not depend directly upon the generation of CPA-alpha and its conversion to CPA-beta.
منابع مشابه
Dissociation of Bovine 6S Procarboxypeptidase A by Reversible Condensation with 2,3-Dimethyl Maleic Anhydride: Application to the Partial Characterization of Subunit III (subunit isolation/free carboxypeptidase A zymogen/inactive serine protease/inactivating deletion)
Bovine 6S procarboxypeptidase A can be dissociated into its three subunits by acylation with dimethyl maleic anhydride. The deacylated subunits are obtained in a largely native form due to instability of the bonds to dimethyl maleate at pH values near neutrality. The seven first residues of subunit III are identical to residues 18-24 of bovine chymotrypsinogen B and very similar with the same r...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملAnalysis of the conformation and ligand-binding properties of the activation segment of pig procarboxypeptidase A.
The isolated activation segment of pig procarboxypeptidase A binds two Tb3+ ions in a strong and specific way. In contrast, the binding of Ca2+, Cd2+ and Mg2+ is weak. The binding of Tb3+ increases the resistance of the isolated activation segment against proteolysis and competes for the binding of the carbocyanine dye Stains-All. This dye forms complexes with the activation segment showing spe...
متن کاملThe three-dimensional structure of human procarboxypeptidase A2. Deciphering the basis of the inhibition, activation and intrinsic activity of the zymogen.
The three-dimensional structure of human procarboxypeptidase A2 has been determined using X-ray crystallography at 1.8 A resolution. This is the first detailed structural report of a human pancreatic carboxypeptidase and of its zymogen. Human procarboxypeptidase A2 is formed by a pro-segment of 96 residues, which inhibits the enzyme, and a carboxypeptidase moiety of 305 residues. The pro-enzyme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 265 12 شماره
صفحات -
تاریخ انتشار 1990